

Bridge Volume Forecast Memo

Introduction

The Alaska Department of Transportation (DOT&PF) has retained Kinney Engineering, LLC (KE) as a subconsultant to DOWL for the *Juneau-Douglas North Channel Crossing Planning & Environmental Linkage (PEL) Study*, which will evaluate alternatives and determine recommended crossing location(s) for a second bridge crossing of the Gastineau channel to and from Douglas Island, north of the existing Juneau-Douglas Bridge. This memo provides volume forecasts for each bridge alternative location using data from two previous memos: the Origin-Destination Data memo and the Volume to Capacity of the Existing Juneau-Douglas Bridge memo.

Figure 1 shows the study areas from the Origin Destination memo and the bridge alternatives.

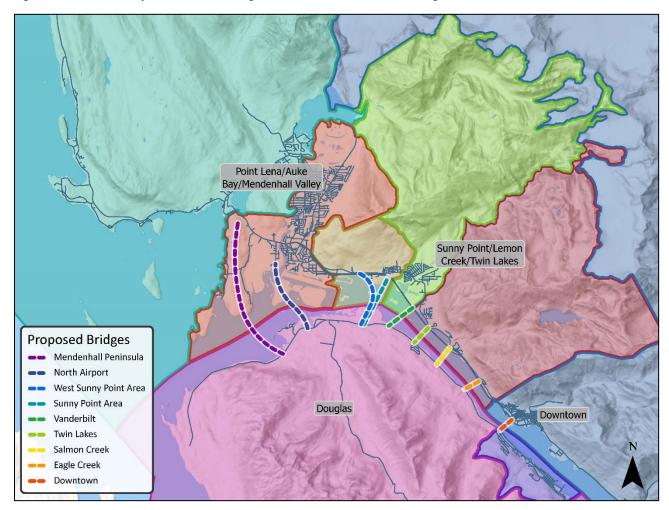


Figure 1: Study Areas and Bridge Alternative

Analysis

Travel Time & Travel Distance for Each Bridge Alternative Location

For the existing bridge and for each of the bridge alternative locations, the travel time and distance between each pair of census blocks was determined using Google Maps travel time and distance estimates, supplemented with estimates of travel time using distance and estimated speed, as applicable.

A table showing the calculated travel times and distances is presented in the Appendix.

Forecast Bridge Volumes (Existing Bridge)

Volume forecasts for the existing bridge were developed previously in the Volume to Capacity of the Existing Juneau-Douglas Bridge memo and are presented in *Table* 1. Note that the forecasted volumes have been rounded to the nearest 100

Table 1: Forecast Bridge Volumes for Existing Juneau-Douglas Bridge

Year	2022	2030	2040	2050	2060
AADT	13,900	14,200	14,600	14,900	15,300

Origin-Destination Proportions

The proportion of the total traffic using the existing bridge that travels between each Census Block Group and Douglas Island was estimated using location based services (LBS) data, as described previously in the Origin-Destination Data memo.

Forecast Bridge Volumes (Bridge Alternative Locations)

For each of the bridge alternative locations, the travel time using the alternative bridge location was compared to the travel time using the existing bridge. For each origin-destination pair, the proportion of the existing bridge traffic volume corresponding to that pair was assigned to either the alternative bridge or the existing bridge, based on the bridge with the shortest travel time for that pair. If the travel times for the alternative and the existing bridge were within 10% of each other, the proportion was split evenly between the two bridges. For the downtown alternative bridge location, it was assumed that traffic would split evenly on each bridge (assuming each bridge would serve one-way traffic).

Any traffic that would use a bridge in any of the alternative locations would increase traffic volumes on Douglas Highway and reduce volumes on Egan Drive. Since Egan Drive is not operating near capacity, average speeds on Egan Drive are mostly impacted by the traffic signals and would not change with a decrease in volumes. However, increased volumes on Douglas Highway could have an impact on speeds. The Highway Capacity Manual Exhibit 15-2 provides an estimate for how vehicle speeds are impacted by directional volumes on two-lane highways. After initial estimates of traffic volumes for each bridge were completed, travel speeds on Douglas Highway were revised to reflect the increased volume. This resulted in longer travel times on Douglas Highway. Estimates of the proportion of traffic using each bridge were adjusted to reflect these new travel times.

Table 2 shows the resulting proportion of traffic that is forecast to be using each bridge based on this analysis. The analysis indicates that 5 to 50% of the traffic would be diverted from the existing bridge to one of the proposed bridge alternatives. The table also shows the travel time savings for each set of bridges, calculated as the average travel time saved per user. While a bridge at the Mendenhall/North Airport location would result in the highest time savings for

individual users (up to 15 minutes), the Sunny Point/Vanderbilt/Twin Lakes/Salmon Creek locations would result in the greatest overall travel time benefit.

Table 3 shows the range of volumes forecasted for each alternative bridge location.

Table 2: Proportion of Traffic Volumes Selecting each Bridge Alternative Location

Bridge	Mendenhall or North Airport	Sunny Point Area or Vanderbilt	Twin Lakes or Salmon Creek	Eagle Creek Bridge	Downtown/ Juneau Douglas
Proposed	5 to 15%	20 to 30%	30 to 40%	40 to 45%	50%
Existing	85 to 95%	70 to 80%	60 to 70%	55 to 60%	50%
Individual Travel Time Savings	Up to 15 minutes	Up to 13 minutes	Up to 10 minutes	Up to 5 minutes	Minimal
Average Time Saved	20 to 35 seconds per vehicle	55 to 65 seconds per vehicle	60 to 65 seconds per vehicle	40 seconds per vehicle	Minimal

Table 3: Alternative Bridge Location Volume Forecast

Mendenhall or North Airport					Sunny Point Area or Vanderbilt				
AADT	AADT	AADT	AADT	AADT	AADT	AADT	AADT	AADT	AADT
2022	2030	2040	2050	2060	2022	2030	2040	2050	2060
Proposed Bridge				Proposed Bridge					
700 to	700 to	750 to	750 to	750 to	2800 to	2850 to	2900 to	3000 to	3050 to
2100	2150	2200	2250	2300	4150	4250	4400	4450	4600
Existing Bridge					Existing Bridge				
11800 to	12050 to	12400 to	12650 to	13000 to	9750 to	9950 to	10200 to	10450 to	10700 to
13200	13500	13850	14150	14550	11100	11350	11700	11900	12250

Table 3: Alternative Bridge Location Volume Forecast (cont)

Twin Lakes or Salmon Creek				Eagle Creek					
AADT	AADT	AADT	AADT	AADT	AADT	AADT	AADT	AADT	AADT
2022	2030	2040	2050	2060	2022	2030	2040	2050	2060
Proposed Bridge					Proposed Bridge				
4150 to	4250 to	4400 to	4450 to	4600 to	5550 to	5700 to	5850 to	5950 to	6100 to
5550	5700	5850	5950	6100	6250	6400	6550	6550	6900
Existing Bridge					Existing Bridge				
8350 to	8500 to	8750 to	8950 to	9200 to	7400 to	7600 to	7800 to	7950 to	8150 to
9750	9950	10200	10450	10700	7850	8050	8250	8450	8650

Downtown/Juneau Douglas								
AADT	AADT	AADT						
2022	2030	2060						
Proposed Bridge								
6750 to			7250 to	7400 to				
7150			7650	7900				
Existing Bridge								
6750 to			7250 to	7400 to				
7150			7650	7900				

In winter, the Eaglecrest Ski Area is estimated to attract 500 to 800 trips per day to the North Douglas area. This could result in a shift of traffic of up to approximately 5% from the Downtown/Juneau Douglas Bridge to the proposed bridges.